Automatic discovery and description of human planning strategies
2023
Article
re
Scientific discovery concerns finding patterns in data and creating insightful hypotheses that explain these patterns. Traditionally, each step of this process required human ingenuity. But the galloping development of computer chips and advances in artificial intelligence (AI) make it increasingly more feasible to automate some parts of scientific discovery. Understanding human planning is one of the fields in which AI has not yet been utilized. State-of-the-art methods for discovering new planning strategies still rely on manual data analysis. Data about the process of human planning is often used to group similar behaviors together. Researchers then use this data to formulate verbal descriptions of the strategies which might underlie those groups of behaviors. In this work we leverage AI to automate these two steps of scientific discovery. We introduce a method for the automatic discovery and description of human planning strategies from process-tracing data collected with the Mouselab-MDP paradigm. Our algorithm, called Human-Interpret, uses imitation learning to describe data gathered in the experiment in terms of a procedural formula and then translates that formula to natural language using a pre-defined predicate dictionary. We test our method on a benchmark data set that researchers have previously scrutinized manually. We find that the descriptions of human planning strategies that we obtain automatically are about as understandable as human-generated descriptions. They also cover a substantial proportion of all types of human planning strategies that had been discovered manually. Our method saves scientists' time and effort as all the reasoning about human planning is done automatically. This might make it feasible to more rapidly scale up the search for yet undiscovered cognitive strategies that people use for planning and decision-making to many new decision environments, populations, tasks, and domains. Given these results, we believe that the presented work may accelerate scientific discovery in psychology, and due to its generality, extend to problems from other fields.
Author(s): | Skirzynski, Julian and Jain, Yash Raj and Lieder, Falk |
Journal: | Behavior Research Methods |
Year: | 2023 |
Month: | January |
Department(s): | Rationality Enhancement |
Bibtex Type: | Article (article) |
Paper Type: | Journal |
Digital: | True |
DOI: | 10.48550/arXiv.2109.14493 |
State: | Accepted |
URL: | https://arxiv.org/abs/2109.14493 |
BibTex @article{Skirzynski2023Description, title = {Automatic discovery and description of human planning strategies}, author = {Skirzynski, Julian and Jain, Yash Raj and Lieder, Falk}, journal = {Behavior Research Methods}, month = jan, year = {2023}, doi = {10.48550/arXiv.2109.14493}, url = {https://arxiv.org/abs/2109.14493 }, month_numeric = {1} } |