
Measuring and modelling how people learn how to plan and how people adapt
their planning strategies to the structure of the environment

Ruiqi He (ruiqi.he@tuebingen.mpg.de)
Max Planck Institute for Intelligent Systems, Tübingen, Germany
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Abstract

Often we find ourselves in unknown situations where we have
to make a decision based on reasoning upon experiences.
However, it is still unclear how people choose which pieces of
information to take into account to achieve well-informed de-
cisions. Answering this question requires an understanding of
human metacognitive learning, that is how do people learn how
to think. In this study, we focus on a special kind of metacog-
nitive learning, namely how people learn how to plan and how
their mechanisms of metacognitive learning adapt the plan-
ning strategies to the structures of the environment. We first
measured people’s adaptation to different environments via a
process-tracing paradigm that externalises planning. Then we
introduced and fitted novel metacognitive reinforcement learn-
ing algorithms to model the underlying learning mechanisms,
which enabled us insights into the learning behaviour. Model-
based analysis suggested two sources of maladaptation: no
learning and reluctance to explore new alternatives.

Keywords: decision-making; planning; metacognitive learn-
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Introduction
In real life, we often have to make decisions in new situations.
Often our decisions and actions result from learned experi-
ences and reasoning upon them. However, it is still unknown
how we learn which pieces of information we should take
into account to efficiently make a well-informed decision.
Answering this question requires understanding how people
learn how to think (metacognitive learning). While direct
decision-making has been studied extensively from the per-
spective of cognitive science (Wang & Ruhe, 2007) and ma-
chine learning (Niv, 2009), our contemporary understanding
of how people learn how to decide remains shallow. There is
some work on modelling how people learn to select between
the decision-making strategies they already know (Lieder &
Griffiths, 2017; Rieskamp & Otto, 2006; Erev & Barron,
2005) but there is little work on how people discover those
decision strategies in the first place. In this study, we focus
on a special kind of metacognitive learning, namely how peo-
ple learn how to plan.

Our work is structured in two parts - measuring and then
modelling metacognitive learning in terms of reinforcement
learning algorithms. For this, we set up an experiment that
utilises a process-tracing paradigm that makes planning ob-
servable. The resulting process-tracing data is then analysed
by a recently developed computational method for inferring
people’s planning strategies and their changes over time. To

model how people learn how to plan, we formalised and
tested three competing hypotheses about how people learn
how to plan using three novel computational models. We
tested our models against each other. The resulting best
model was used to draw conclusions for different groups of
participants.

By advancing our understanding of human metacognitive
learning, this line of work may contribute to laying the foun-
dations for improving metacognitive learning and helping
people overcome maladaptive ways of decision-making.

Background
Mouselab MDP paradigm
A major obstacle to studying metacognitive learning is that
we cannot directly observe people’s cognitive strategies and
how they change over time. To overcome this hurdle, we
utilise a process-tracing paradigm that renders people’s be-
haviour highly diagnostic of their planning strategies, namely
the Mouselab Markov Decision Process (MDP) paradigm
(Callaway, Lieder, Krueger, & Griffiths, 2017). In this
paradigm, participants plan the route of a spider through a
maze with the goal to maximise their score (see Figure 1)
with the given number of trials. The score is the sum of the
values of the nodes (the gray circle) on the path they choose
to traverse. Each node harbours a gain or a loss, which are
initially hidden but can be revealed by clicking on it. This ex-
plicit clicking action corresponds to evaluating the quality of
a potential future state, which is a fundamental cognitive op-
eration in planning. The cognitive cost of this operation is ex-
ternalised by charging a fee of −1 for each node they reveal.
Participants are thus encouraged to not immediately click ev-
ery location, but instead, reveal information as necessary. In
this way, the paradigm externalises the mental representation
that people use for planning in terms of which nodes have
been clicked and what their revealed values are.

Measuring metacognitive learning
The Mouselab-MDP paradigm can be used to measure the
changes in people’s strategy sequence. For this, we have
previously developed a computational method that infers
which planning strategy a participant used on each trial
based on their clicks (Jain, Callaway, & Lieder, 2019; Jain
et al., 2021). This method returns which of 79 prede-
fined planning strategies a participant is most likely to have



Figure 1: Example of the Mouselab paradigm for the constant
variance condition with five nodes revealed

used. For detailed documentation of all 79 strategies please
see https://osf.io/zgshx/. We can therefore measure
metacognitive learning in terms of how the inferred strategy
changed from each trial to the next.

Modelling metacognitive learning
To model metacognitive learning we will apply reinforcement
learning algorithms to the problem of deciding how to decide
(meta-decision-making). We will briefly introduce these two
frameworks and how they can be combined.

Reinforcement learning Research suggests that human
learning is partly driven by rewards and punishments, which
they receive through trial and error (Niv, 2009). This learning
mechanism has inspired reinforcement learning algorithms,
which learn to estimate how much reward can be expected to
receive from a certain action (a) in a given state (s). This
estimate is updated according to the differences between re-
ceived and predicted rewards δ:

Q(s,a)← Q(s,a)−α ·δ (1)

where α is the learning rate. To balance exploitation and ex-
ploration, the agent can choose its actions probabilistically,
maximising the predicted action value, for example using the
softmax rule (see for example Equation 3).

Meta-decision-making Previous work suggests that the
brain is equipped with multiple decision systems that interact
in numerous ways (Dolan & Dayan, 2013; Daw, 2018). In
contrast to the Pavlovian and model-free systems, the model-
based system supports flexible reasoning about which action
might be best given available information, goals and prefer-
ences. To efficiently balance decision quality and decision
time given enormous amount of information, the model-based
system’s flexibility necessitates a mechanism for selecting
only relevant information, that is deciding how to decide,
which is formally known as meta-decision-making (Boureau,
Sokol-Hessner, & Daw, 2015). Recent work has formalised
the problem of meta-decision-making as a meta-level MDP
(Krueger, Lieder, & Griffiths, 2017; Griffiths et al., 2019):

Mmeta = (B,C ∪{⊥},Tmeta,rmeta) , (2)

where belief states bt ∈ B encode the model-based deci-
sion system’s beliefs about the values of alternative courses

of actions. The temporal evolution of those belief states
(b1,b2, · · · ) is driven by the decision system’s computations
c1,c2, · · · according to the meta-level transition probabili-
ties T (bt ,ct ,ct+1). Finally, the meta-level reward function
rmeta(bt ,ct) encodes the cost of performing the planning oper-
ation ct ∈ C and the expected return of terminating planning
(ct =⊥) and acting based on the current belief state bt .

Metacognitive reinforcement learning Planning strate-
gies can be thought of as policies for solving metalevel
MDPs. We can therefore formalise the problem of discover-
ing effective planning strategies as solving a metalevel MDP
for the optimal metalevel policy (Griffiths et al., 2019). Solv-
ing meta-decision-making problems optimally is often com-
putationally intractable but the optimal solution can be ap-
proximated through reinforcement learning (Russell & We-
fald, 1991; Callaway, Gul, Krueger, Griffiths, & Lieder,
2018). Hence, we assume that the brain approximates opti-
mal meta-decision-making via reinforcement learning mech-
anisms that seek to approximate the optimal solution of the
meta-level MDP defined in Equation 2 by either learning to
approximate the optimal policy directly or by learning an ap-
proximation to its value function. Previous work has applied
this idea to model how people learn to select between alterna-
tive cognitive strategies (Erev & Barron, 2005; Rieskamp &
Otto, 2006; Lieder & Griffiths, 2017), learn how many steps
to plan ahead (Krueger et al., 2017), and learn when to exert
how much cognitive control (Lieder, Shenhav, Musslick, &
Griffiths, 2018). However, this approach has yet to be applied
to investigate how people discover and refine their cognitive
strategies.

Experiment
To investigate metacognitive learning, we designed an ex-
periment with three conditions using the Mouselab-MDP
paradigm to measure how people adapt their planning strate-
gies to different environments.

Methods

Each participant was randomly allocated to one of three con-
ditions. Each condition presented the participants with a dif-
ferent environment. In the increasing variance environment,
the range of possible rewards is larger at locations that are
further away from the starting point at the centre of the maze.
In the decreasing variance environment, the variance between
possible node values decreases the further away from the
starting point, that is the nodes that are closest to the centre
have the largest range of possible values. In the constant vari-
ance environment, the variance between possible node values
remains the same. The possible value of each node at any
given step can be seen in table 1. Step 1 corresponds to the
three nodes that are closest to the starting point in the middle,
step 2 is the next node, step 3 is the last set of nodes that are
furthest away from the starting point.



Environment Step 1 Step 2 Step 3
Increasing -4, -2, 2, 4 -8, -4, 4, 8 -48, -24, 24, 48
Decreasing -48, -24, 24, 48 -8, -4, 4, 8 -4, -2, 2, 4
Constant -10, -5, 5, 10 -10, -5, 5, 10 -10, -5, 5, 10

Table 1: Possible reward values for the three environments

Participants We recruited 174 participants, 58 for each
condition, on CloudResearch. The recruitment was limited
to participants who had completed 100+ HITS, had a score
> 90, and were located in the United States. Each participants
received a base-pay of $1.50 and a bonus up to $5 based on
their performance. They received minimal instructions and
had to pass a quiz to demonstrate correct comprehension of
the setup before starting the first trial.

Procedure Each participant was assigned to one condi-
tion was asked to complete 35 trials. The scores are dis-
played on the screen and are updated after each action (click,
move). Planning is encouraged by a performance-depend
bonus, which is 0.2 cents for each point of their final score
after completion of all trials.

Results
To investigate whether people learn to adapt their planning
strategies to the structure of the environment, the strategy se-
quences were analysed. To classify our participants’ planning
strategies into adaptive and maladaptive ones, we first created
a list of planning strategies that were used by the participants
and then determined the expected score of the strategies in the
list using computer simulations. For each environment, the
five strategies with the highest score are labelled as adaptive,
while the five low scoring strategies are labelled as maladap-
tive strategies. We illustrated (see Figure 2) and tested the
aggregated proportion of the five adaptive and five maladap-
tive strategies for trends using Mann Kendall tests. The tests
confirmed an increasing trend for the aggregated proportion
of adaptive strategies in all environments (S > 367, p < .001
in all environments). In addition, the tests suggest a de-
creasing trend for the maladaptive strategies in the increas-
ing (S = −429, p < .001) and decreasing variance environ-
ments (S =−295, p < .001) and no trend in the constant vari-
ance environment (S = −83, p = .176). This means that in
all three environments the proportion of people who adopted
using adaptive strategies gradually increased while the pro-
portion using maladaptive strategies gradually decreased in
all but one environment. Furthermore, for each of those five
adaptive and five maladaptive strategies, we tested whether
the proportion of people using that strategy increased or de-
creased across trials using a series of Mann Kendall tests (see
https://osf.io/zgshx/ for detailed results of the tests).
Overall, the tests suggested an increasing trend or no trend
for the adaptive strategies, while the data indicated decreas-
ing trend or no trend for the maladaptive strategies (see Fig-
ure 3). For instance, for the increasing variance condition, we
found that the frequency of the adaptive strategy to search the

final destinations for the best possible outcome (Strategy 21)
steadily increased (Mann Kendall test: S = 535, p < .001),
while the frequency of the maladaptive strategy to act with-
out planning (Strategy 30) steadily decreased (Mann Kendall
test: S =−414, p < .001).

These results suggest that people discover and learn to use
adaptive strategies in all three environments. The effect is
most prominent in the increasing variance condition and least
prominent in the constant variance condition. This might be
because discovering adaptive strategies is easiest when the
environment has a clear structure that adaptive strategies can
exploit.

Modelling metacognitive learning
Having empirically demonstrated that people discover and
learn to use adaptive planning strategies, we now model the
underlying computational mechanisms in terms of metacog-
nitive reinforcement learning using two novel models:
Learned value of computation (LVOC), direct adjustment of
decision- making policy via gradient ascent (REINFORCE)
and its non-learning variant, which postulates that people do
not update their planning strategy. Each of these three models
hypothesise a different learning mechanism.

Models of metacognitive reinforcement learning
Representations of the strategies The strategies people
use in the Mouselab-MDP can be described in terms of
a weighted combination of neuroscience-informed features.
One example of a group of features are pruning features,
which are related to assigning a negative value to thinking
about a path whose expected value is below a certain thresh-
old. Therefore, the learning trajectory can be expressed by
how the weights of those features evolve over time. We have
defined 52 different features (see https://osf.io/zgshx/
for a detailed description).

The REINFORCE model The REINFORCE model as-
sumes that people adjust their planning strategy directly by
following its performance gradient ascent through the strat-
egy space using a softmax policy (Williams, 1992):

πθ(c|b) =
exp

( 1
τ
·∑52

k=1 θk · fk(b,c)
)

∑c∈Cb
exp

( 1
τ
·∑52

k=1 θk · fk(b,c)
) (3)

where b is the belief state, c is the click being considered and
Cb is the set of clicks available in the belief state b. τ is the
inverse temperature parameter and fk are the neuroscience-
informed features values described above. The larger the
value of τ is, the more deterministically the highest value ac-
tion is chosen. The parameters of the policy (θ) are updated
once after each trial according to the learning rule:

θ← θ+α ·
O

∑
t=1

γ
t−1 · rmeta(bt ,ct) ·∇θ lnπθ(ct |bt) (4)

where α is the learning rate, γ is the discount factor and O is
the number of planning operations the model performed on



(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 2: Proportion of aggregated strategy development throughout the trials for each environment.

(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 3: Trial-wise proportion of adaptive and maladaptive strategy for each environment. The first 5 strategies are adaptive
strategies, the last 5 strategies are maladaptive strategies

that trial, that is the number of clicks plus one, which repre-
sents the termination of planning operation. The learning rate
α was optimised using ADAM (Kingma & Ba, 2014). Both
α and γ are treated as free parameter that are fit separately
for each participant. In addition to the vanilla REINFORCE,
a pseudo-reward (Ng, Harada, & Russell, 1999) is used to
speed up learning. The value of the pseudo-reward on per-
forming computation ct in belief state bt and transitioning to
belief state bt+1 is given by

PR(bt ,c,bt+1) = E[Rπbt+1
|bt+1]−E[Rπbt

|bt+1] (5)

which is the difference between the expected value of the best
path in belief state bt+1 according to the policy πbt+1 and the
expected value of the best path in belief state bt+1 according
to the policy πbt .

The LVOC model According to the LVOC model, people
discover and change their strategy continuously by learning to
predict the values of alternative planning operations (Krueger
et al., 2017). The model assumes that people learn a linear
approximation to the meta-level Q-function:

Qmeta(bt ,ct)≈
52

∑
k=1

wk · fk(bt ,ct), (6)

using the fk and corresponding weights wk The LVOC model
learns the weights wk of those features by Bayesian linear
regression of the bootstrap estimate Q̂(bt ,ct) of the meta-level
value function onto the features fk. The bootstrap estimate

Q̂(bt ,ct) = rmeta(bt ,ct)+
52

∑
k=1

µk,h · fk(bt+1,ct+1) (7)

is the sum of the immediate meta-level reward and the pre-
dicted value of the next belief state bt+1 under the current
meta-level policy. The predicted value of bt+1 is the scalar
product of the posterior mean µk,h of the weights wk, given
the observations from all h preceding planning operations and
the features fk(bt+1,ct+1) of bt+1 and the cognitive opera-
tion ct+1 that the current policy selects given state. Given the
posterior on the feature weights w = (w1, ...,w52), the next
planning operation ct+1 is selected by a generalised version
of Thompson sampling. That means, to make the kth meta-
decision, n weight vectors w̃(1), · · · , w̃(n) are sampled from
the posterior distribution of the weights given the series of
meta-level states, selected planning operations, and resulting
value estimates experienced so far. That is,

w̃(1)
t , · · · , w̃(n)

t ∼ P(w|Et), (8)

where the set Ek = {e1, · · · ,et} contains the meta-decision-
maker’s experience from the first t meta-decisions. To
be precise, each meta-level experience e j ∈ Ek is a tuple(
b j,h j, Q̂(b j,c j;µ j)

)
containing a meta-level state, the com-

putation selected in it, and the bootstrap estimates of its Q-
value. The arithmetic mean of the sampled weight vectors
w̃(1), · · · , w̃(n) is then used to predict the Q-values of each
possible planning operation c ∈ C according to Equation 6.
The planning operation with the highest predicted Q-value is
used for decision-making. For a fair comparison, the LVOC
model also utilises the metacognitive pseudo rewards defined
in Equation 5. The LVOC model has three free parame-
ters: the mean vector µµµprior and variance σ2

prior of its prior
N (w;µµµprior,σ

2 · I) on the weights w and the number of sam-
ples n.



Model fitting methods
To assess how well each model can capture how people learn
how to plan, we fitted each model’s free parameters and priors
on feature weights to the participant’s data and applied each
model to the series of problems the participant had to solve.

The parameters of the models were fit by maximising a
Multivariate-Normal pseudo-likelihood function defined in
terms of the probability that the model would generate the
participant’s trial wise scores as a function of its parameters.
For a given participant i, the pseudo-likelihood function un-
der model m is given by:

L ((θi,m,σi,m)|ri) = φ(ri; r̂i,m(θ),σi,mI) (9)

where θi,m is the parameter vector used to fit the data from
participant i with model m, ri is the vector of scores that the
ith participant obtained on trials 1 through 35, σ is the stan-
dard deviation of the errors between the observed scores and
the model’s predictions r̂i,m(θi,m), and φ(x;µ,Σ) is the den-
sity function of the multivariate normal distribution. We esti-
mate the parameters θi,m and σi,m by maximising the pseudo-
likelihood function in Equation 9 using Bayesian Optimisa-
tion (Bergstra, Yamins, & Cox, 2013). All selected models
are then fit to the participant data using 400 iterations. In each
iteration, the model’s prediction is estimated by averaging the
model’s scores across 30 simulations.

Model selection
After the model-fitting, we performed individual-level and
group-level model selection using the Akaike Information
Criterion (AIC) (Akaike, 1998). On the level of individual
participants, both learning models, LVOC and REINFORCE,
seem to explain the learning behaviour reasonably better than
the non-learning model (see Table 2). The number of par-
ticipants whose data was best explained was the same for
both learning models (71). To investigate the differences in

Environment Model Count
Increasing variance non-learning 11

REINFORCE 24
LVOC 23

Decreasing variance non-learning 10
REINFORCE 28
LVOC 20

Constant variance non-learning 11
REINFORCE 19
LVOC 28

Table 2: Count of individual participants’ best fitted model.

which model explains a participant’s data best, we divided the
participants into three groups: participants who were not us-
ing adaptive strategies in the beginning but learned to do so
were classified as highly adaptive learners, participants us-
ing maladaptive strategies in the last trial were classified as
maladaptive participants, and the other participants are la-
belled as moderately adaptive participants. The group-level
model comparison provided strong evidence in favour of the
REINFORCE model (average AIC = 308.31) over the LVOC

model (average AIC= 315.94) and over its non-learning vari-
ant (average AIC = 341.43). As shown in Figure 4, the RE-
INFORCE model was able to capture how the participants’
performance throughout the experiment in all three condi-
tions. Most importantly, the REINFORCE model was able
to capture the improvement in people’s performance as they
adapt their planning strategies to the structure of the increas-
ing variance environment (Figure 4a).

Increasing (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=21) 387.44 343.54 346.97

Maladaptive (n=11) 184.42 174.68 205.36
Mod. adaptive(n=26) 375.56 341.55 351.25

Decreasing (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=16) 369.84 326.66 320.53

Maladaptive (n=3) 202.95 198.94 197.86
Mod. adaptive (n=39) 370.27 306.39 324.88

Constant (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=11) 349.30 330.33 334.64

Maladaptive (n=7) 326.66 316.72 309.72
Mod. adaptive (n=40) 307.08 290.15 294.28

Table 3: Averaged AIC for each model grouped by partici-
pants. Best performance is marked in bold.

Model-based analysis
Due to its superior performance, REINFORCE was chosen to
perform model-based analysis to gain insights into the learn-
ing behaviour and more specifically how they differ among
groups of participants.

We hypothesised that maladaptive participants would have
lower learning rates than the other two groups and tested our
hypothesis using Wilcoxon rank-sum tests on the fitted learn-
ing rates. In addition, exploratory Wilcoxon rank-sum tests
were conducted on the other parameters γ, which quantifies
the influence of immediate meta-level rewards as opposed
to the reward received later during the trial, and τ, which
describes to which extent the participant explores different
strategies (see Table 4). For the increasing variance envi-
ronment, the tests imply that the distribution of inverse tem-
perature parameters differs significantly between maladaptive
(M = 233.94,SD = 380.68) and moderately adaptive partici-
pants (M = 37.89,SD = 88.61). This suggests that maladap-
tive participants might choose their planning operations more
deterministic and thereby perform less cognitive exploration
of alternative planning strategies. Participant-level analyses
confirmed that 9 out of the 11 maladaptive participants started
with a maladaptive strategy and either did not change their
strategy or only changed it once. This suggests that the reason
why some people find it difficult to steer away from maladap-
tive decision strategies is that they fail to explore alternative
decision strategies. In the decreasing variance environment,
the learning rate also differed significantly between maladap-
tive participants (M < 0.0001,SD < 0.0001) and the other
two groups (highly adaptive: M = 0.007,SD = 0.018; mod-
erately adaptive: M = 0.009,SD = 0.026). The small learn-
ing rate suggests that maladaptive participants did not learn
at all. In the constant variance environment, the significant



(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 4: Averaged REINFORCE model performance visualised against participants’ performance

difference in inverse temperature implies that highly adaptive
learners (M = 9.12,SD = 26.51) explore more than the mal-
adaptive ones (M = 32.46,SD = 54), which aligns with the
adaptive strategy for this environment.

Parameter Comparison T p
Inverse temperature

(increasing variance) Malad. vs. Mod. ad. 2.79 .005
Inverse temperature
(constant variance) Malad. vs. Highly. ad. 2.22 .026

Learning rate
(decreasing variance) Malad. vs. Highly. ad. -2.01 .044

Malad. vs. Mod. ad. -1.98 .048

Table 4: Results of Wilcoxon rank sum test on the fitted pa-
rameters

Conclusion and further work
We first measured how people adapt their planning strate-
gies to different environments and then modelled the underly-
ing learning mechanisms in terms of metacognitive reinforce-
ment learning. Using a process-tracing method, we found
that participants discovered different types of planning strate-
gies depending on what was adaptive for the environment
they were in. Concretely, the proportion of adaptive strategies
significantly increased in all environments, while the propor-
tion of maladaptive strategies significantly decreased in al-
most all environments. After having confirmed that people
adapt to all three environments, we proceeded to develop and
test two new models of metacognitive reinforcement learning.
Our models extend previous models of metacognitive learn-
ing (Lieder & Griffiths, 2017; Krueger et al., 2017; Lieder et
al., 2018) to the problem of strategy discovery. They achieve
this by learning a policy for selecting individual planning op-
erations. In additional, innovation of our models is that they
learn not only from external rewards but also from intrinsi-
cally generated pseudo-rewards for gaining valuable infor-
mation. Model selection suggested that the REINFORCE
model best describes how people learn how to plan. Our
model-based analysis of individual differences in metacog-
nitive learning highlighted two potential causes of maladap-
tative planning: no learning and reluctance to explore. Fur-
ther work could look into how to motivate learning and ex-
ploration - for example by gamification.
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